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Intermodulation Distortion Analysis Using
a Frequency-Domain Harmonic Balance
Technique

JOHN H. HAYWOOD anp Y. LEONARD CHOW, MEMBER, IEEE

Abstract — A simple approach to the technique of harmonic balance for
nonlinear circuit analysis is presented. The algorithm operates solely in the
frequency domain to simplify the resolution of the intermodulation prod-
ucts of two input tones with narrow frequency spacing.

A description of the technique and its implementation is given. The
harmonic and intermodulation products of a single FET amplifier are
calculated and the results compared with a Volterra series analysis and
experimentally measured values. A second single FET amplifier is analyzed
to show the accuracy of the prediction of gain compression with this
technique.

The accuracy of this technique is shown to equal that of the Volterra
series analysis used in the comparison. The ability of the frequency-
domain technique to routinely analyze arbitrary circuit topologies, how-
ever, provides a definite advantage over the Volterra series method.

I. INTRODUCTION

RESENT COMMERCIALLY available computer-

aided nonlinear analysis techniques for microwave
circuits consists wholly or partially of solution in the time
domain of the differential equations describing the net-
work. Analysis packages such as SPICE [1] and Watand [2]
solve the entire system of equations simultaneously for
each time step. For networks with time constants large
with respect to one problem of the driving signal, this
time-domain solution may have to be performed over
many full periods of the input waveform until the system
has reached steady state.

Nakhla and Vlach [3] have modified the harmonic bal-
ance technique of Bailey [4] and Lindenlaub [5] to mini-
mize the number of differential equations to be solved. In
this case, the network is split into linear and nonlinear
subnetworks, the linear subnetwork containing only linear
elements and the nonlinear subnetwork containing all of
the nonlinear elements and possibly some linear elements
for convenience. The linear subnetwork is solved in the
frequency domain, leaving only the nonlinear subnetwork
to be solved in the time domain. The discrete Fourier
transform is employed to convert the resulting waveform
into its frequency spectrum. The harmonic balance tech-
nique is used to match the harmonic amplitudes of current
or voltage in the set of branches joining the linear and
nonlinear subnetworks.
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The above techniques are very successful for systems
with a single driving frequency since the number of time
samples required to resolve the spectral amplitudes of the
harmonically related branch currents and voltages is de-
termined by the Nyquist criterion. Therefore, to determine
the amplitude of harmonics of order N, requires only
2-N, +1 time samples.

To determine the intermodulation products of a network
with two driving frequencies, however, requires the resolu-
tion of the amplitudes of nonharmonically related branch
currents and voltages. The required number of time sam-
ples increases as the reciprocal of the input frequency
spacing and can become prohibitively large.

Gilmore [6] uses a bandpass sampling technique to
reduce the number of time samples required. By sampling
at the bandpass rate as opposed to the higher Nyquist rate,
the fundamentals and surrounding odd-order intermodula-
tion products are aliased with the lower frequency, even-
order intermodulation products. This aliasing requires that
an input frequency shift and time domain solution be
performed to extract the current and voltage amplitudes at
each frequency.

One analytical technique exists which is able to predict
the harmonic and intermodulation products of nonlinear
circuits. The Volterra series relates the output v(¢) to the
input x(¢) by a series of convolutions in the time domain:

(1) = [ ()t m) dr
+ fj;jfj:hz(’rp Tz)x(t —n)x(t—mn)dndn

+f::fj:/j:%(’rl,72,73)x(1_71) (1)

x(t—n)x(t—m)dndrdr+

The &, (7, - -, 7,) are the n-dimensional impulse responses
characterizing the system. They are derived from the cir-
cuit topology and component values by a rigorous, alge-
braic technique [7], [8]. The Volterra series is a powerful
technique for analyzing circuits with a fixed topology, as
truncation of the infinite series is the only source of error.
The nonlinear impulse responses must be derived for each
different circuit topology, however, making this technique
impractical for computer-aided analysis of arbitrary struc-
tures.
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~ This paper introduces a harmonic balance technique in
the frequency domain for efficiently determining the
harmonic and intermodulation products of nonlinear net-
works with multitone inputs. This eliminates the solution
of the system equations in the time domain, conversion
from the time domain to the frequency domain (discrete
Fourier transform), and reconstruction of the port voltage
time-domain waveforms from their Fourier series coeffi-
cients.

The concept of a harmonic balance operating solely in
the frequency domain has been exploited previously by
Rhyne and Steer [9], [10]. Their technique is based on a
formula developed by Steer and Khan [11] which predicts
the output current spectrum of a nonlinearity with a
multitone input, when the nonlinear I /¥ characteristic is a
power series dependent on a single voltage with complex
coefficients and frequency-dependent time delays.

In this paper we have chosen to represent the nonlineari-
ties by a simple power series relating the element’s magni-
tude to its terminal voltage. The element’s current spec-
trum may now be determined by a series of convolutions
in the frequency domain and possibly a differential or
integration (multiplication or division by jw) in the case of
a nonlinear capacitor or inductor, respectively. Although
both the approach of this paper and that of Rhyne and
Steer are based on operations in the frequency domain, the
simplicity of the convolution of discrete frequency spectra
renders the technique of this paper much simpler and more
straightforward.

Theoretically, this technique could be used for any mag-
nitude of nonlinearity. Large nonlinearities, however,
would require a greater number of terms in the power
series expansion and more harmonics and intermodulation
products to accurately represent the current and voltage
waveforms. In this paper we will consider both small and
moderate nonlinearities, those which can be accurately
represented by four power series coefficients, and harmonic
and intermodulation products up to seventh and third
order, respectively.

A complete description of the technique is given in the
following section. A successful method for optimizing the
matrix of linear—nonlinear interface port currents to ob-
tain the minimum error is discussed in Section III. A
simple single-stage FET amplifier as studied by Minasian
[12] is used as an example to demonstrate the ability of
this technique to predict intermodulation distortions. A
second example, based on a FET amplifier as studied by
Law et al. [13], illustrates the accuracy of the prediction of
gain saturation. The results of these examples are com-
pared with their respective Volterra series analyses and
experimental results.

II. DESCRIPTION OF FREQUENCY-DOMAIN
TECHNIQUE

The harmonic balance technique of Nakhla and Vlach
[3] requires that the network to be analyzed be split up
into a strictly linear subnetwork, for analysis in the
frequency domain, and a nonlinear subnetwork, possibly
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Fig. 1. Division of network into linear and nonlinear subnetworks. (a)
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balance technique.
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including some linear elements for convenience, for analy-
sis in the time domain.
In the frequency-domain harmonic balance technique

(FDHB) of this paper, the network is divided into a linear

subnetwork encompassing all of the linear elements, and a
series of nonlinear subnetworks, each comprising only a
single nonlinear element (Fig. 1). Given the input frequen-
cies and the orders of the harmonic and intermodulation
products to be determined, a vector of the pertinent fre-
quencies can be constructed. A nodal admittance matrix is
calculated for the linear subnetwork at each frequency.
The network nodes are divided into two types: external
nodes, to which voltage sources or nonlinear elements are
connected, and internal nodes, which are connected only
to other linear elements (Fig. 2). The nodal admittance
matrix is thus

V,
VEX1 IEXI
4 Igpx,
(Yeel [Ye,]) wne) | (11 )
el LY, Vin, 0
VINZ 0
‘ 0
IN,,,

By solving for the internal node voltages, [V, ], in terms of
external node voltages, [Vzx], the reduced nodal admit-
tance matrix, [Y,4], can be constructed, which relates
external node currents only to external node voltages. The
internal voltages are expressed in terms of external volt-
ages as follows:

[VIN]=[ ] [ ][VEX]

Using this to eliminate [V, ] from (2), we obtain

[YrealVer] = [[Xo] + [EIE) X V] = [
(4)
This reduced matrix can be considered to be a port admit-
tance matrix, with all port voltages being with respect to
the network ground. This preprocessing of the nodal ad-
mittance matrix has two advantages:

1) the addition of linear subnetwork nodes and branches
does not increase the size of the problem once the
reduced admittance matrix has been constructed;

2) only the external node voltages are calculated at each
iteration, thereby increasing the iteration rate.

®3)

The external nodes (ports) are divided into two types:
source ports (input, output, and dc bias connections) and
nonlinear ports, to which the nonlinear elements are con-
nected (Fig. 3).

With the nonlincar elements isolated, the constitutive
relations for each of the nonlinear subnetworks can be
written analytically in a power series form dependent on
their terminal voltages. As an example, consider a nonlin-
ear conductance:

(5)

i(t) =go+ g v(t)+ gy v* (1) + g0 () + -
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where v(t) is the real-valued time-domain terminal voltage
waveform. Using the Fourier transform, the current spec-
trum can be written:

I{(0) =gy 8(w)+ g V(w)+ g2 V(w)*V(w)

+ g5 V(@)*V(w)*V(w)+ - (6)
where 8(w) is a Dirac delta function, and * denotes
convolution. Similarly, for a capacitor,

z(t)— (CO v(2)+C 02 (2)+ Cyr 3(t)+

) ()

and
(@) = jw(CyV(w)+ C-V(w)V(w)
+ GV (@) V(@) V(w)+--+). (8)
Now the current spectrum of the nonlinear subnetworks
can be determined directly from the applied voltage spec-
trum. In this manner we eliminate the need for recon-
structing the terminal voltage waveform and subsequent
DFT. By performing all calculations in the frequency
domain, resolving the intermoculation products of two

narrowly spaced input frequencies ceases to be a problem.
The algorithm used for this technique is shown below:

1) Construct the vector of N, frequencies, fi, 1<k <N,
to be used in the analysis.

2) Construct the linear port admittance matrix at each
frequency.

3) Establish the initial guesses for the currents I; ~ at
each port, p, and each frequency, f,. The smplest
choice of these is the set of currents which exists
when all nonlinear elements are replaced by their
linear equivalents.

4) Apply these currents to the linear port admittance
matrix to determine the nonlinear port voltages, V7,

5) For each nonlinear element, determine, by convolu—
tions, the nonlinear element currents, I,

6) Using a suitable optimization method, choose a new
set of nonlinear port currents, [ ,{*1 to minimize the
error between the chosen nonlinéar port currents,
Ii71, and the computed nonlinear element currents,
Iz+‘i

7 Iterate 4 to 6 until a predetermined error threshold is
reached.

To obtain the nonlinear port voltages from the port cur-
rents in step 4, the linear port admittance matrix is divided
into four submatrices:

Vsourcel source,
source, source,
( [A] [B] ) Vsourcem J Isource,,s (9)
(el 121)| (n Ly |
Vi, I,
Verl ILnnI
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Submatrix A relates the source port currents to the source
port voltages. Submatrix B relates the source port currents
to the nonlinear port voltages. Submatrices C and D relate
the nonlinear port currents to the source port voltages and
nonlinear port voltages, respectively. The nonlinear port
voltages can now be obtained from

VLI IL1 Ifsourcq
V I source.
il ) i Bl B () i | ARCTY
VLM/ ILnnl VSOUfcenm

This process is repeated for each frequency, f,.

The nonlinear port currents are then found in step 5
using equations similar to (6) above. Since the port voltage
and current spectra consist of a series of complex-valued
delta functions rather than continuous spectra, the con-
volutions can be computed exactly and are a simple matter
of a frequency shift and a sum of the products of complex
numbers for each frequency component.

III. OPTIMIZATION

The objective of the optimization routine is to predict a
matrix of complex nonlinear port currents which will mini-
mize the error between these currents, which are applied to
the linear subnetwork, and the currents obtained from the
nonlinear elements. The definition of error at the ith
iteration is

N, N 2
s ML~ Ty, |

error; = ), ), —I——xi (11)
p=1k=1 |ILW§

This is the same definition as that used by Gilmore [6],
with the exception that the error at each port is now
normalized to the square of the amplitude of the funda-
mental at that port. This ensures that the current at each
port contributes equally to the total error, and each will be
of equal importance in the optimization.

The major obstacles to the optimization were the large
number of variables to be optimized and the inability to
determine the gradient of the error with respect to these
variables.

A technique which does not require gradients is used by
Hicks and Khan [14]. A type of relaxation method, this
technique predicts a matrix of nonlinear port currents,
1;, ), for the i +1 iteration which is a weighted average of
the previous iteration’s nonlinear port currents, I; . and
nonlinear element currents, Iy,

I =Aedy, +(1—>\)-Iik,,,, 0<A<l. (12)

This eliminates optimization with respect to each of a large
number of variables, as in the case of a gradient or direct
search method. The value of the error at each iteration,
however, is used only as a measure of the accuracy of the
result. The optimization method employed with the FDHB
method of this paper chooses an optimum value for the
weighting factor A based on the variation of the error at
each iteration.
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The nonlinear port current matrix consists of complex
numbers representing the current at each of N, nonlinear
ports and N, frequencies of interest. This matrix can be
considered to describe a point in complex N space, where

N=N,N,. (13)

Assuming, as before, that a superior estimate of the true
nonlinear port currents exists along a line joining the
points I; and I, in N space, it remains to search
along thls fine for an optlmum value for A to minimize the
error. The algorithm used is as follows:

1) Use I;  to calculate Iy,
corresponds to A=0.

2) Calculate the error using I} = (I} LT 1 ]lVLk )/2.
This error corresponds to A = 0.

3) Calculate the error using I}’ =1y, , (A=1).

4) Choose an optimum A, A, by fu{dmg the minimum
of a parabola fitting the three (A, error) points.

5) Calculate the new I;} ' =Ao Iy, +(1—=Ao)If, .

and the error. This error
k.p

The success of this method is illustrated in the following
section.

IV. RESULTS

Two examples are given here. The first is an example of
the prediction of intermodulation products arising from a
small nonlinearity. The circuit is one previously studied by
Minasian [12]. This choice was made since all nonlinear
coefficients and component values are tabulated in [12],
allowing a direct comparison of the Volterra series analysis
and experimental results with the results of the FDHB
technique of this paper. The circuit and nonlinear coeffi-
cients are shown in Fig. 4. The fundamental and third-order
intermodulation products were calculated with an input
consisting of two tones with a center frequency of 2.4 GHz
and a frequency spacing of 2 MHz at six different power
levels. These values are plotted in Fig. 5. The error
threshold used for the FDHB results was 1.0 X107, The
maximum discrepancy between the nonlinear port currents
and the nonlinear element currents at any port and any
frequency is therefore 100 dB below the magnitude of the
fundamental at that port. Also shown in Fig. 5 for com-
parison are experimentally measured values and Volterra
series predictions of Minasian. The Volterra series is an
analytical technique which, when given exact nonlinear
coefficients, should yield theoretically exact results. The
analysis by Minasian includes two simplifying assump-
tions:

1) the source impedance at the difference frequency,
fi— /5, is small compared to the input impedance of
the FET;

2) the contribution to the power at 2f, — f, by inter-
modulations above third order is negligible.

Inspection of Fig. 5 reveals that the accuracy of the
FDHB results is equal that of the Volterra series analysis.
Whereas Minasian used a closed-form expression to char-
acterize the output conductance, g,, the FDHB technique
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Fig. 4. Single FET amplifier and component values of first example.
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Fig. 5. Measured and predicted fundamental and third-order intermod-
ulation distortion power versus available input power. Center
frequency = 2.4 GHz.

dictated the use of a power series representation. This, or
the assumptions made by Minasian in his analysis, may
serve to explain the small discrepancy in results between
the two techniques.

The second example demonstrates the prediction of gain
compression as the nonlinearity is increased by an increase
in the input power level. The circuit analyzed, shown in
Fig. 6, is one previously studied by Law and Aitchison
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Fig. 6. Single FET amplifier and component values of second example.
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Fig. 7. Power gain versus available input power for second example.

[13). The power gain of the circuit was computed over a 14
dB range of available input power at 2 and 14 GHz to
demonstrate the capability of the FDHB technique to
predict gain saturation. Again, excellent agreement is
obtained between the FDHB predictions and the mea-
sured values and Volterra series predictions of Law and
Aitchison shown in Fig. 7.

To determine the effect of including more harmonics in
the calculations, a series of results were generated using
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TABLEI
OuTPUT POWER (DBM) AT ALL FREQUENCIES VERSUS HARMONIC
ORDER (INPUT FREQUENCY, 14.0 GHZ; INPUT POWER, 8§ DBM)

Output power (dBm) at all freq. vs harmonic order
Input frequency is 14,0 GHz, Input power is 8 dBm
Frequency Harmonic Order
5 6 7
f 9.341 9.341 9.341
211 -16.82 -16.82 -16.82
3f1 -51.71 -51.7 -51.71
41 7365  -73.64  -73.64
5f1 -85.58 -85.40 -85.40
6f1 -103.3 -103.2
7f1 -122.5
TABLEII

OutruT POWER (DBM) AT ALL FREQUENCIES VERSUS HARMONIC
ORrDER (INPUT FREQUENCY, 14.0 GHz; INPUT POWER, 22 DBM)

Output power (dBm) at all freq. vs harmonic order
Input frequency is 14.0 GHz, Input power is 22 dBm
Frequency Harmonic Order
5 6 7

1 21.33 21.32 21.32
Of1 2764 . 2738 2.723
3f1 -27.10 -27.43 -27.23
4f1 -14.65 -1623  -15.16
5f] -26.62 -27.75 -28.09
6f1 -47.57  -52.49
71 -46.95

the circuit of Fig. 6 at 14 GHz and 8 dBm available input
power using harmonic orders ranging from 5 to 7. The
output power at R, at each frequency is shown in Table I.
In Table I it may be noted that the addition of more
harmonics to the balance does not significantly change the
values of the previously calculated harmonics. This is
because the added harmonics have very little power rela-
tive to the others, It is expected, however, that for a case
where the power in an added harmonic is closer to the
powers of the previously calculated harmonics, the effect
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Fig. 8. Convergence rate of second example for two input power levels.

Frequency =14 GHz.

will be noticeable. To test this prediction, the input power
was raised by 14 dB to 22 dBm, a fivefold increase in
voltage amplitude. This enlarges the effect of the nonlin-
earities and increases the power in the higher harmonics,:
as observed in Table II. The effect of more harmonics in
the computation is now noticeable.

The success of the optimization method is illustrated
using the circuit of Fig. 6 operated at a frequency of
14 GHz. The error at each iteration is plotted in Fig. 8
for two different input power levels using both the
Hicks—Khan fixed point method (A = 0.9) and the method
of this paper. The use of the estimated optimum weighting
factor, A, for each iteration resulted in a rapid and stable
convergence in both cases.

At very high input power levels, the convergence may
not be as stable. Cases of this type have been avoided since
such extreme gain compression would never be encoun-
tered in the operation of amplifiers similar to that of Fig. 4
or Fig. 6.

V. CONCLUSIONS

A harmonic balance technique has been presented which
permits the determination of the harmonic and intermod-
ulation distortion of nonlinear networks with single- and
two-tone inputs. Representation of the nonlinearities by a
power series expansion allows all computations to be per-
formed in the frequency domain. The advantages of this
method are:

1) frequency to time domain and time to frequency
domain conversions are not required;
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2) time-domain integration is replaced by convolution;
the simiplicity of which is not affected by the input
frequency spacing.

The execution speed of this algorithm, therefore, is very
fast. Solution of the single FET amplifier of Fig. 6, with
sixth-order harmonics at a frequency of 14 GHz and an
input power level of 22 dBm required 23 jterations and 1.8
seconds of CPU time on an IBM 4381. The 31mple repre-
sentation of the nonlinearities in a power series form also
enables the extension of the FDHB technique to include
two-dimensional. nonlinearities, for example, an output
conductance dependent on both V,, and V. Disad-
vantages of this technique are:

1) preprocessing of the network admittance matrix is

required to separate all nonlinear elements from the

linear subcircuit;
2) larger nonlinearities require more power series coefﬁ-
cients and. correspondlngly greater execution time.

In principle this technique can be applied to circuits
with large nonlinearities; however, this has not been tested
as there are few such examples in the literature for com-
parison.

The-accuracy of the FDHB techmque is shown to equal
that of the Volterra series. The ability of the FDHB
technique to routinely analyze arbitrary circuit topologies
-provides a distinct advantage over the Volterra series
method.
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