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Intermodulation Distortion Analysis Using
a Frequency-Domain Harmonic Balance

Technique

JOHN H. HAYWOOD ANDY. LEONARD CHOW, MEMBER, IEEE

Abstract — A simple approach to the technique of harmonic bafance for

nonlinear circuit analysis is presented. The atgorithm operates solely in the

frequency domain to simplify the resolution of the intermodnlation prod-

ucts of two input tones with narrow frequency spacing.

A description of the technique and its implementation is given. The

harmonic aud intermodulation prodncts of a single FET amplifier are

calculated and the results compared with a Volterra series analysis and

experimentally measured values. A second single FET amplifier is analyzed

to show the accuracy of the prediction of gain compression with this

tectilque.

The accuracy of this technique is shown to equal that of the Volterra

series analysis used in the comparison. The ability of the frequency-

domain technique to routinely analyze arbitrary circuit topologies, how-

ever, provides a definite advantage over the Volterra series method.

I. INTRODUCTION

P RESENT COMMERCIALLY available computer-

aided nonlinear analysis techniques for microwave

circuits consists wholly or partially of solution in the time

domain of the differential equations describing the net-

work. Analysis packages such as SPICE [1] and Watand [2]

solve the entire system of equations simultaneously for

each time step, For networks with time constants large

with respect to one problem of the dxiving signal, this

time-domain solution may have to be performed over

many full periods of the input waveform until the system

has reached steady state.

Nakhla and Vlach [3] have modified the harmonic bal-

ance technique of Bailey [4] and Lindenlaub [5] to minim-

ize the number of differential equations to be solved. In

this case, the network is split into linear and nonlinear

subnetworks, the linear subnetwork containing only linear

elements and the nonlinear subnetwork containing all of

the nonlinear elements and possibly some linear elements

for convenience. The linear subnetwork is solved in the

frequency domain, leaving only the nonlinear subnetwork

to be solved in the time domain. The discrete Fourier

transform is employed to convert the resulting waveform

into its frequency spectrum. The harmonic balance tech-

nique is used to match the harmonic amplitudes of current

or voltage in the set of branches joining the linear and

nonlinear subnetworks.
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The above techniques are very successful for systems

with a single driving frequency since the number of time

samples required to resolve the spectral amplitudes of the

harmonically related branch currents and voltages is de-

termined by the Nyquist criterion. Therefore, to determine

the amplitude of harmonics clf order Nfi requires only

2. Nk + 1 time samples.

To determine the intermodulation products of a network

with two driving frequencies, however, requires the resolu-

tion of the amplitudes of nonharrnonically related branch

currents and voltages. The required number of time sam-

ples increases as the reciprocal of the input frequency

spacing and can become prohibitively large.

Gilmore [6] uses a bandpass sampling technique to

reduce the number of time samples required. By sampling

at the bandpass rate as opposed to the higher Nyquist rate,

the fundamentals and surrounding odd-order intermodula-

tion products are aliased with the lower frequency, even-

order intermodulation products, This aliasing requires that

an input frequency shift and time domain solution be

performed to extract the current and voltage amplitudes at

each frequency.

One analytical technique exists which is able to predict

the harmonic and intermodulation products of nonlinear

circuits. The Volterra series relates the output u(t) to the

input x(t) by a series of convolutions in the time domain:

U(t)=j+mhl(’r)x(t-~)(h
—m

“X(i–72)X(t –T3)d71d72dT3+ ““”.

The h~(~l,. . . . r.) are the n-dimensional impulse responses

characterizing the system. They are derived from the cir-

cuit topology and component values by a rigorous, alge-

braic technique [7], [8]. The Volterra series is a powerful

technique for analyzing circuits with a fixed topology, as

truncation of the infinite series is the only source of error.

The nonlinear impulse responses must be derived for each

different circuit topology, however, making this technique
impractical for computer-aided analysis of arbitrary struc-

tures.
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This paper introduces a harmonic balance technique in

the frequency domain for efficiently determining the

harmonic and intermodulation products of nonlinear net-

works with multitone inputs. This eliminates the solution

of the system equations in the time domain, conversion

from the time domain to the frequency domain (discrete

Fourier transform), and reconstruction of the port voltage

time-domain waveforms from their Fourier series coeffi-

cients.

The concept of a harmonic balance operating solely in

the frequency domain has been exploited previously by

khyne and Steer [9], [10]. Their technique is based on a

formula developed by Steer and Khan [11] which predicts

the output current spectrum of a nonlinearity with a

multitone input, when the nonlinear 1/V characteristic is a

power series dependent on a single voltage with complex

coefficients and frequency-dependent time delays.

In this paper we have chosen to represent the nonlineari-

ties by a simple power series relating the element’s magni-

tude to its terminal voltage. The element’s current spec-

trum may now be determined by a series of convolutions

in the frequency domain and possibly a differential or

integration (multiplication or division by jti ) in the case of

a nonlinear capacitor or inductor, respectively. Although

both the approach of this paper and that of Rhyne and

Steer are based on operations in the frequency domain, the

simplicity of the convolution of discrete frequency spectra

renders the technique of this paper much simpler and more

straightforward.
Theoretically, this technique could be used for any mag-

nitude of nonlinearity. Large nonlinearities, however,

would require a greater number of terms in the power

series expansion and more harmonics and intermodulation

products to accurately represent the current and voltage

waveforms. In this paper we will consider both small and

moderate nonlinearities, those which can be accurately

represented by four power series coefficients, and harmonic

and intermodulation products up to seventh and third

order, respectively.

A complete description of the technique is given in the

following section. A successful method for optimizing the

matrix of linear–nonlinear interface port currents to ob-

tain the minimum error is discussed in Section III. A

simple single-stage FET amplifier as studied by Minasian

[12] is used as an example to demonstrate the ability of

this technique to predict intermodulation distortions. A

second example, based on a FET amplifier as studied by

Law et al. [13], illustrates the accuracy of the prediction of

gain saturation. The results of these examples are com-

pared with their respective Volterra series analyses and

experimental results.

II. DESCRIPTION OF FREQUENCY-DOMAIN

ncHNIQuE

The harmonic balance technique of Nakhla and Vlach

[3] requires that the network to be analyzed be split up

into a strictly linear subnetwork, for analysis in the

frequency domain, and a nonlinear subnetwork, possibly

(a)

(b)

Fig. 1. Divmion of network into linear and nonlinear subnetworks. (a)
Standard harmonic batance technique.(b) Frequency-domain harmonic
batance technique.

x - EXTERNALNODE o - INTERNAL NODE

Fig. 2. Intemat/external node division,

l/P o/P Vbias Vbias

J-1
7 T ii T

source ports

I LINEAR SUBNETWORK
I

nonlinear ports
56 78 9 10

gm

Fig. 3. Source port and nonlinear port connections to linear subnet-
work.
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including some linear elements for convenience, for analy-

sis in the time domain.

In the frequency-domain harmonic balance technique

(FDHB) of this paper, the network is divided into a linear,

subnetwork encompassing all of the linear elements, and a

series of nonlinear subnetworks, each comprising only a

single nonlinear element (Fig. 1). Given the input frequen-

cies and the orders of the harmonic and intermodulation

products to be determined, a vector of the pertinent fre-

quencies can be constructed. A nodal admittance matrix is

calculated for the linear subnetwork at each frequency.

The network nodes are divided into two types: external

nodes, to which voltage sources or nonlinear elements are

connected, and internal nodes, which are connected only

to other linear elements (Fig. 2). The nodal admittance

matrix is thus

([Yee] [Y,,]

[~e] [y,]

‘v EX1
vEX2

v“EXn,,

Iv IN1
vIN2

v“INn,n

.

I \EX1
I EX2

I“EXmex

[:]

o
0

0

(2)

By solving for the internal node voltages, [Vrv], in terms of

external node voltages, [VEX], the reduced” nodal admit-

tance matrix, [Y,.~], can be constructed, which relates

external node currents only to external node voltages. The

internal voltages are expressed in terms of external volt-

ages as follows:

[v,N] = [y,] -’[Ye, ][vEx]. (3)

Using this to eliminate [VIN] from (2), we obtain

[Yred][vEx] = [[ Yee]+[Yel][~,]-’[ ye]] [vEx] = [IEX].

(4)

This reduced matrix can be c~nsidered to be a port admit-

tance matrix, with all port voltages being with respect to

the network ground. This preprocessing of the nodal ad-

mittance matrix has two advantages:

1) the addition of linear subnetwork nodes and branches

does not increase the size of the problem once the

reduced admittance matrix has been constructed;

2) only the external node voltages are calculated at each

iteration, thereby increasing the iteration rate.

The external nodes (ports) are divided into two types:

source ports (input, output, and dc bias connections) &d

nonlinear ports, to which the nonlinear elements are con-

nected (Fig. 3).
With the nonlinear elements isolated, the constitutive

relations for each of the nonlinear subnetworks can be

written analytically in a power series form dependent on

their terminal voltages. As an example, consider a nonlin-

ear conductance:

i(t) =go+gl. D(t) +g2”u2(t) +g3”u3(t)+ .0. (5)
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where u(t) is the real-valued time-domain terminal voltage

waveform. Using the Fourier transform, the current spec-

trum can be written:

l(w) =go.8(@)+ gl”v(@)+ g2”v(ti)*v(ti)

+g3. V(ti)l*V(ti)*V(u)+ . . . (6)

where 8(w) is a Dirac delta function, and * denotes

convolution. Similarly, for a capacitor,

2(1) =:(co”@)+c 1”u2(t)+c2”u3 (t)+ ““”) (7)

and

1(0) =ju(co. v(u)+ cl”v(o)’’v(ti)

+C2. V(U)* V(U)* V(0)+ . . . ). (8)

Now the current spectrum of the nonlinear subnetworks

can be determined directly from the applied voltage spec-

trum. In this manner we eliminate the need for recon-

structing the terminal voltage waveform and subsequent

DFT. By performing all calculations in the frequency

domain, resolving the intermoclulation products of two

narrowly spaced input frequencies ceases to be a problem.

The algorithm used for this technique is shown below:

1)

2)

3)

4)

5)

6)

7)

Construct the vector of Nf frequencies, jk, 1< k < Nf,

to be used in the analysis.

Construct the linear port admittance matrix at each

frequency.

Establish the initial guesses for the currents l~~,p at

each port, p, and each frequency, fk. The simplest

choice of these is the set of currents which exists

when all nonlinear elements are replaced by their

linear equivalents.

Apply these currents to the linear port admittance

matrix to determine the nonlinear port voltages, V~k,p.

For each nonlinear element, determine, by convolu-

tions, the nonlinear element currents, IjLk,,.

Using a suitable optimization method, choose a new

set of nonlinear port currents, 1~~~, to minimize the

error between the chosen nonhnear port currents,

121, and the computed nonlinear element currents,

I;~: ,.

Iterate 4 to 6 until a predet ermined error threshold is

reached.

To obtain the nonlinear port voltages from the port cur-

rents in step 4, the linear port admittance matrix is divided

into four submatrices:

v source

v source

v“source

VL1

v L2

v“Lnn,

—

ourcel

ourcen,

I L,
I L2

1“Lnn,

(9)
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Submatrix A relates the source port currents to the source

port voltages. Submatrix B relates the source port currents

to the nonlinear port voltages. Submatrices C and D relate

the nonlinear port currents to the source port voltages and

nonlinear port voltages, respectively. The nonlinear port

voltages can now be obtained from

This process is repeated for each frequency, f~.

The nonlinear port currents are then found in step 5

using equations similar to (6) above. Since the port voltage

and current spectra consist of a series of complex-valued

delta functions rather than continuous spectra, the con-

volutions can be computed exactly and are a simple matter

of a frequency shift and a sum of the products of complex

numbers for each frequency component.

III. OPTIMIZATION

The objective of the optimization routine is to predict a

matrix of complex nonlinear port currents which will mini-

mize the error between these currents, which are applied to

the linear subnetwork, and the currents obtained from the

nonlinear elements. The definition of error at the i th

iteration is

This is the same definition as that used by Gilmore [6],

with the exception that the error at each port is now

normalized to the square of the amplitude of the funda-

mental at that port. This ensures that the current at each

port contributes equally to the total error, and each will be

of equal importance in the optimization.

The major obstacles to the optimization were the large

number of variables to be optimized and the inability to

determine the gradient of the error with respect to these

variables.

A technique which does not require gradients is used by

Hicks and Khan [14]. A type of relaxation method, this

technique predicts a matrix of nonlinear port currents,

1~~ ~, for the i + 1 iteration which is a weighted average of
the previous iteration’s nonlinear port currents, I~k,,, and

nonlinear element currents, 11 :
N% P

I;:;=~.Ii jVLkp+(l-A)”lik,, O< A<l. (12)

This eliminates optimization with respect to each of a large

number of variables, as in the case of a gradient or direct

search method. The value of the error at each iteration,

however, is used only as a measure of the accuracy of the

result. The optimization method employed with the FDHB

method of this paper chooses an optimum value for the

weighting factor A based on the variation of the error at

each iteration.

The nonlinear port current matrix consists of complex

numbers representing the current at each of NP nonlinear

ports and Nf frequencies of interest. This matrix can be

considered to describe a point in complex N space, where

(13)

Assuming, as before, that a superior estimate of the true

nonlinear port currents exists along a line joining the

points I;k and I~Lk, in N space, it remains to search

along this ‘fine for an optimum value for A to minimize the

error. The algorithm used is as follows:

1)

2)

3)

4)

5)

Use I;k, to calculate l:L,, and the error. This error

corresponds to A = O.

Calculate the error using l;,, = (l~k, + I~Lk ,)/2.

This error corresponds to A = 0~5. ‘

Calculate the error using l:, = I~Lk,P, (A = 1).

Choose an optimum A, Ao, by finding the minimum

of a parabola fitting the three (A, error) points.

Calculate the new 1~~~ = Ao. I:Lk, + (1 – Ao)” I;,,.

The success of this method is illustrated in the following

section.

IV. RESULTS

Two examples are given here. The first is an example of

the prediction of interrnodulation products arising from a

small nonlinearity. The circuit is one previously studied by

Minasian [12]. This choice was made since all nonlinear

coefficients and component values are tabulated in [12],

allowing a direct comparison of the Volterra series analysis

and experimental results with the results of the FDHB

technique of this paper. The circuit and nonlinear coeffi-

cients are shown in Fig. 4. The fundamental and third-order

intermodulation products were calculated with an input

consisting of two tones with a center frequency of 2.4 GHz

and a frequency spacing of 2 MHz at six different power

levels. These values are plotted in Fig. 5. The error

threshold used for the FDHB results was 1.0X 10-10. The

maximum discrepancy between the nonlinear port currents

and the nonlinear element currents at any port and any

frequency is therefore 100 dB below the magnitude of the

fundamental at that port. Also shown in Fig. 5 for com-

parison are experimentally measured values and Volterra

series predictions of Minasian. The Volterra series is an

analytical technique which, when given exact nonlinear

coefficients, should yield theoretically exact results. The
analysis by Minasian includes two simplifying assump-

tions:

1) the source impedance at the difference frequency,

~1 – fz, is smallcomparedto theinputimpedanceof
the FET;

2) the contribution to the power at 2f1 – fz by inter-

modulations above third order is negligible.

Inspection of Fig. 5 reveals that the accuracy of the

FDHB results is equal that of the Volterra series analysis.

Whereas Minasian used a closed-form expression to char-

acterize the output conductance, gO, the FDHB technique
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Single FET amplifier and component vafues of first example.
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Fig. 5. Measured and predicted fundamental and third-order intermod-
ulation distortion power versus available input power. Center
frequency = 2.4 GHz~

dictated the use of a power series representation. This, or

the assumptions made by Minasian in his analysis, may

serve to explain the small discrepancy in results between

the two techniques.

The second example demonstrates the prediction of gain

compression as the nonlinearity is increased by an increase

in the input power level. The circuit analyzed, shown in

Fig. 6, is one previously studied by Law and Aitchison
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Fig. 6. Single f?ET amplifier and component values of second example.
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Fig. 7. Power gain versus available input power for second example.

[13]. The power gain of the circuit was computed over a 14

dB range of available input power at 2 and 14 GHz to

demonstrate the capability of the FDHB technique to
pre&ct gain saturation. Aga,ii, excellent agreement is

obtained between the FDHB predictions and the mea-

sured values and Volterra series predictions of Law and

Aitchison shown in Fig. 7.

To determine the effect of including more harmonics in

the calculations, a series of results were generated using
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TABLE I
OUTPUT POWER (DBM) AT ALL FREQUENCIES VERSUS HARMONIC

ORDER (INPUT FREQUENCY,14.0 GHz; INPUT POWER,8 DBM)

Output power (dBm) at all freq. vs harmonic order

Input frequency is 14,0 GHz, Input power is 8 dBm

Frequency Harmonic Order

5 6 7

fl 9.341 9.341 9.341

2f 1 -16.82 -16.82 -16.82

3f 1 -51.71 -51171 -51!71

4f 1 -73.65 -73.64 -73.64

5f 1 -85.58 -85.40 -85.40

6f 1 -103!3 -103,2

7f 1 -122,5

TABLE II
OUTPUT POWER (DBM) AT ALL FREQUENCIES VERSUS ELwwoiwc

ORDER (INPUT FREQUENCY,14.0 GHz; INPUT POWER,22 DBM)

Output power (dBm) at all freq, vs harmonic order

Input frequency is 14.0 GHz, Input power is 22 dBm

Frequency Harmonic Order

5 6 7

fl 21.33 21.32 21.32

2f 1 2s754 2,738 2,723

3f 1 -27.10 -27.43 -27.23

4f 1 -14,65 -15,23 -15,16

5f 1 -26.62 -27.75 -28,09

6f 1 -47,57 -52,49

7f 1 -46.95

102 1-

0

,0-2
“’= k = 0.9

10-4

10-6

10-8

,0-10 .

0 2 4 10 12 14
[TERAT?ON NU8MBER

AVAILABLE INPUT POWER = 8 dBm

,0-2

“’””’ z = 0.9
10-4

10-6

10-8

,0-10 -

, , ‘ , , I 1 , I m ,

0 24 681012141618~D
ITERATION NUMBER

AVAILABLE INPUT POWER = 22 dBm

Fig. 8. Convergence rate of second example for two input power levels.
Frequency =14 GHz.

will be noticeable. To test this prediction, the input power

was raised by 14 dB to 22 dBm, a fivefold increase in

voltage amplitude. This enlarges the effect of the nonlin-

earities and increases the power in the higher harmonics,

as observed in Table II. The effect of more harmonics in

the computation is now noticeable.

The success of the optimization method is illustrated

using the circuit of Fig. 6 operated at a frequency of

14 GHz. The error at each iteration is plotted in Fig. 8

for two different input power levels using both the

Hicks–Khan fixed point method (A= 0.9) and the method

of this paper. The use of the estimated optimum weighting

factor, Xo, for each iteration resulted in a rapid and stable

convergence in both cases.

At very high input power levels, the convergence may

not be as stable. Cases of this type have been avoided since

such extreme gain compression would never be encoun-

tered in the operation of amplifiers similar to that of Fig. 4

or Fig. 6.

V. CONCLUSIONS
the circuit of Fig. 6 at 14 GHz and 8 dBm available input

power using ha~monic orders ranging from 5 to 7. The

output power at RL at each frequency is shown in Table I.

In Table I it may be noted that the addition of more

harmonics to the balance does not significantly change the

values of the previously calculated harmonics. This is

because the added harmonics have very little power rela-

tive to the others. It is expected, however, that for a case

where the power in an added harmonic is closer to the

powers of the previously calculated harmonics, the effect

A harmonic balance technique has been presented which

permits the determination of the harmonic and intermod-

ulation distortion of nonlinear networks with single- and

two-tone inputs. Representation of the nonlinearities by a

power series expansion allows all computations to be per-

formed in the frequency domain. The advantages of this

method are:

1) frequency to time domain and time to frequency

domain conversions are not required;
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2) time-domain integration is replaced by convolution, [8]

the simplicity of which is not affected by the input

frequency spacing. [9]

The execution speed of this algorithm, therefore, is very

fast. Solution of the single FET amplifier of Fig. 6, with [lo]

sixth-order harmonics at a frequency of 14 GHz and an

input power level of 22 dBm required 23 iterations and 1.8

seconds of CPU time on an IBM ‘4381. The simple repre- [11]

sentation of the nonlinearities in a power series form also

enables the extension of the FDHB technique to include [121

two-dimensional nonlinearities, for example, an output

conductance dependent on both Vd~ and V~~. Disad-
[13]

vantages of this technique are:

1) preprocessing of the network admittance matrix is

required to separate all nonlinear elements from the [14]

linear subcircuit;

2) larger nonlinearities require more power series coeffi-

cients and correspondingly greater execution time.

In principle this technique can be applied to circuits

with large nordinearities; however, this has not been tested

as there are few such examples in the literature for com-

parison.

The accuracy of the FDHB technique is shown to equal

that of the Volterra series. The ability of the FDHB

technique to routinely analyze arbitrary circuit topologies

provides a distinct advantage over the Volterra series

method.
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